用户名: 密码: 验证码:
Ethylene Detection Based on Organic Field-Effect Transistors With Porogen and Palladium Particle Receptor Enhancements
详细信息    查看全文
  • 作者:Kalpana Besar ; Jennifer Dailey ; Howard E. Katz
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2017
  • 出版时间:January 18, 2017
  • 年:2017
  • 卷:9
  • 期:2
  • 页码:1173-1177
  • 全文大小:334K
  • ISSN:1944-8252
文摘
Ethylene sensing is a highly challenging problem for the horticulture industry because of the limited physiochemical reactivity of ethylene. Ethylene plays a very important role in the fruit life cycle and has a significant role in determining the shelf life of fruits. Limited ethylene monitoring capability results in huge losses to the horticulture industry as fruits may spoil before they reach the consumer, or they may not ripen properly. Herein we present a poly(3-hexylthiophene-2,5-diyl) (P3HT)-based organic field effect transistor as a sensing platform for ethylene with sensitivity of 25 ppm V/V. To achieve this response, we used N-(tert-Butoxy-carbonyloxy)-phthalimide and palladium particles as additives to the P3HT film. N-(tert-Butoxy-carbonyloxy)-phthalimide is used to increase the porosity of the P3HT, thereby increasing the overall sensor surface area, whereas the palladium (<1 μm diameter) particles are used as receptors for ethylene molecules in order to further enhance the sensitivity of the sensor platform. Both modifications give statistically significant sensitivity increases over pure P3HT. The sensor response is reversible and is also highly selective for ethylene compared to common solvent vapors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700