用户名: 密码: 验证码:
Voltage/pH-Driven Mechanized Silica Nanoparticles for the Multimodal Controlled Release of Drugs
详细信息    查看全文
文摘
The major challenges of current drug delivery systems for combination chemotherapy focus on how to efficiently transport drugs to target sites and release multiple drugs in a programmed manner. Herein, we report a novel multidrug delivery system, MSNPs 1, based on mechanized silica nanoparticles, which were constructed through functionalization of mesoporous silica nanoparticles with the acid-cleavable intermediate linkages and the monoferrocene functionalized 尾-cyclodextrin (Fc-尾-CD) as supramolecular nanovalves. MSNPs 1 achieved zero premature release in the physiological pH solution and realized two different release modalities. In modality 1, MSNPs 1 released the encapsulated drugs gemcitabine (GEM) and doxorubicin (DOX) in sequence when they were successively applied to voltage and acid stimuli. The release time and dosage of GEM were precisely controlled via external voltage. The subsequent acid-triggered release of DOX was attributed to breakage of the intermediate linkages containing ketal groups. Modality 2 is the concurrent release of these two drugs directly upon acid exposure. Furthermore, the cell viability experiments demonstrated that MSNPs 1 had an improved cytotoxicity to MCF7 cells in comparison with single DOX- or GEM-loaded mechanized silica nanoparticles. We envisage that MSNPs 1 will play an important role in research and development for a new generation of controlled-release drug delivery system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700