用户名: 密码: 验证码:
Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids
详细信息    查看全文
  • 作者:Andre C. Maranhao ; Andrew D. Ellington
  • 刊名:ACS Synthetic Biology
  • 出版年:2017
  • 出版时间:January 20, 2017
  • 年:2017
  • 卷:6
  • 期:1
  • 页码:108-119
  • 全文大小:577K
  • ISSN:2161-5063
文摘
There have been considerable advancements in the incorporation of noncanonical amino acids (ncAA) into proteins over the last two decades. The most widely used method for site-specific incorporation of noncanonical amino acids, amber stop codon suppression, typically employs an orthogonal translation system (OTS) consisting of a heterologous aminoacyl-tRNA synthetase:tRNA pair that can potentially expand an organism’s genetic code. However, the orthogonal machinery sometimes imposes fitness costs on an organism, in part due to mischarging and a lack of specificity. Using compartmentalized partnered replication (CPR) and a newly developed pheS negative selection, we evolved several new orthogonal Methanocaldococcus jannaschii (Mj) tRNA variants tRNAs with increased amber suppression activity, but that also showed up to 3-fold reduction in promiscuous aminoacylation by endogenous aminoacyl-tRNA synthetases (aaRSs). The increased orthogonality of these variants greatly reduced organismal fitness costs associated in part due to tRNA mischarging. Using these methods, we were also able to evolve tRNAs that supported the specific incorporation of 3-halo-tyrosines (3-Cl-Y, 3-Br-Y, and 3-I-Y) in E. coli.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700