用户名: 密码: 验证码:
Lipoprotein Complex of Equine Lysozyme with Oleic Acid (ELOA) Interactions with the Plasma Membrane of Live Cells
详细信息    查看全文
文摘
Recent evidence supports the idea that early aggregates, protein, and lipoprotein oligomers but not large aggregates like fibrils that are formed at late stages of the aggregation process are responsible for cytotoxicity. Oligomers can interact with the cellular plasma membrane affecting its structure and/or dynamics or may be taken up by the cells. In either case, disparate cascades of molecular interactions are activated in the attempt to counteract the disturbance induced by the oligomers. If unsuccessful, cell death follows. Here, we study the molecular and cellular mechanisms underlying PC12 cell death caused by ELOA oligomers. ELOA, a lipoprotein complex formed by equine lysozyme (EL) and oleic acid (OA), induces cell death in all tested cell lines, but the actual mechanism of its action is not known. We have used methods with single-molecule sensitivity, fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS), and confocal laser scanning microscopy (CLSM) imaging by avalanche photodiodes (APD), so-called APD imaging, to study ELOA interactions with the plasma membrane in live PC12 cells. We detected ELOA accumulation in the cell surroundings, observed ELOA interactions with the plasma membrane, and local changes in plasma membrane lipid dynamics in the vicinity of ELOA complexes. These interactions resulted in plasma membrane rupture, followed by rapid influx and distribution of ELOA inside the already dead cell. In order to probe the ELOA−plasma membrane interaction sites at the molecular and atomic levels, the ELOA complexes were further studied by photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy, nuclear magnetic resonance (NMR) and atomic force microscopy (AFM). We observed a novel mechanism of oligomer toxicity−cell death induced by continuous disturbance of the plasma membrane, eventually causing permanent plasma membrane damage and identified the sites in ELOA that are potentially involved in the interactions with the plasma membrane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700