用户名: 密码: 验证码:
How Ternary Mobile Phases Allow Tuning of Analyte Retention in Hydrophilic Interaction Liquid Chromatography
详细信息    查看全文
文摘
An attractive yet hardly explored feature of hydrophilic interaction liquid chromatography (HILIC) is the tuning of analyte retention through the addition of an alcohol to the water (W)鈥揳cetonitrile (ACN) mobile phase (MP). When retention times increase sharply between 10/90 and 5/95 (v/v) W/ACN, intermediate retention values are stepwise accessible with a ternary MP of 5/90/5 (v/v/v) W/ACN/alcohol by switching from methanol to ethanol to isopropyl alcohol. We investigate the physicochemical basis of this retention tuning by molecular dynamics simulations using a model of a 9 nm silica pore between two solvent reservoirs. Our simulations show that alcohol molecules insert themselves neatly into the retentive W-rich layer at the silica surface, without disrupting the layer鈥檚 structure or altering its essential properties. With the decreasing tendency of an alcohol (methanol > ethanol > isopropyl alcohol) to move toward the silica surface, the contrast between the W-rich layer and the bulk MP sharpens as the latter becomes more organic, while the W density near the silica surface remains high. Analyte retention increases with the ratio between the W mole fraction in the diffuse part of the W-rich layer and that in the bulk MP. We predict that tuning of HILIC retention is possible over a wide range through the choice of the third solvent in a W/ACN-based ternary MP, whereby the largest retention values can be expected from W-immiscible solvents that fully remain in the bulk MP.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700