用户名: 密码: 验证码:
D2O Interaction with Planar ZnO(0001) Bilayer Supported on Au(111): Structures, Energetics and Influence of Hydroxyls
详细信息    查看全文
  • 作者:Xingyi Deng ; Dan C. Sorescu ; Junseok Lee
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2016
  • 出版时间:April 21, 2016
  • 年:2016
  • 卷:120
  • 期:15
  • 页码:8157-8166
  • 全文大小:633K
  • 年卷期:0
  • ISSN:1932-7455
文摘
We investigate the interaction between D2O and the planar ZnO(0001) bilayer grown on Au(111) with temperature programmed desorption (TPD), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. We show that D2O molecules adsorbed on this planar surface form two ordered overlayers, a (3 × 3) and a (√3 × √3)R30°, not seen before on any of the bulk ZnO single crystal surfaces. The apparent activation energies of desorption (Ed) estimated from TPD peaks are 15.2 and 16.7–17.3 kcal/mol for (3 × 3) and (√3 × √3)R30°, respectively, which agree well with the adsorption energy values calculated from DFT (14.9–15.6 kcal/mol and 16.8–16.9 kcal/mol, respectively). The DFT calculations reveal that the formation of the overlayers takes place at different packing densities and is mediated by extensive hydrogen bonding among the molecules. The hydroxyl groups, which accumulate very slowly on the ZnO(0001) bilayer surface under the standard ultrahigh vacuum (UHV) environment, strongly suppress the formation of the (√3 × √3)R30° overlayer but have less impact on the (3 × 3) overlayer. These findings are explained based on the difference in packing densities of the overlayers such that only the (3 × 3) overlayer with a more open structure can accommodate small amounts of the adsorbed hydroxyl groups.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700