用户名: 密码: 验证码:
13C/12C and 15N/14N Isotope Analysis To Characterize Degradation of Atrazine: Evidence from Parent and Daughter Compound Values
详细信息    查看全文
  • 作者:Armin H. Meyer ; Martin Elsner
  • 刊名:Environmental Science & Technology (ES&T)
  • 出版年:2013
  • 出版时间:July 2, 2013
  • 年:2013
  • 卷:47
  • 期:13
  • 页码:6884-6891
  • 全文大小:463K
  • 年卷期:v.47,no.13(July 2, 2013)
  • ISSN:1520-5851
文摘
Atrazine (Atz) and its metabolite desethylatrazine (DEA) frequently occur in the environment. Conclusive interpretation of their transformation is often difficult. This study explored evidence from 13C/12C and 15N/14N isotope trends in parent and daughter compounds when Atz was dealkylated by (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (蔚carbon/permanganate = 鈭?.6 卤 0.6鈥?and 蔚carbon/Rhodoccoccus = 鈭?.8 卤 0.2鈥?, whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as the only product (Atz + permanganate), 13C/12C remained constant, close to the initial value of Atz, because the carbon atoms involved in the reaction step are not present in DEA. (ii) When DEA was formed together with desisopropylatrazine (biodegradation of Atz), 13C/12C increased but only within 2鈥? (iii) When DEA was further biodegraded, 13C/12C increased by up to 9鈥?giving strong testimony of the metabolite鈥檚 breakdown. Two lines of evidence emerge. (a) Enrichment of 13C/12C in DEA, compared to initial Atz, may contain evidence of further DEA degradation. (b) Dual element (15N/14N versus 13C/12C) isotope plots for dealkylation of atrazine agree with indirect photodegradation but differ from direct photolysis and biotic hydrolysis. Trends in multielement isotope data of atrazine may, therefore, decipher different degradation pathways.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700