用户名: 密码: 验证码:
Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review
详细信息    查看全文
文摘
The bio-active and biodegradable properties of hydroxyapatite (HA) make this material a preferred candidate for implants such as bone replacement in replacing natural tissues damaged by diseases and accidents. However, the low mechanical strength of HA hinders its application. Combining HA with a biocompatible material with a higher mechanical strength, such as a titanium (Ti) alloy, to form a composite has been of interest to researchers. A HA/Ti composite would possess characteristics essential to modern implant materials, such as bio-inertness, a low Young鈥檚 modulus, and high biocompatibility. However, there are issues in the material processing, such as the rheological behavior, stress-shielding, diffusion mechanism and compatibility between the two phases. This paper reviews the HA and Ti alloy interactions under various conditions, in vitro and in vivo tests for HA/Ti composites, and common powder metallurgy processes for HA/Ti composites (e.g., pressing and sintering, isostatic pressing, plasma spraying, and metal injection molding).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700