用户名: 密码: 验证码:
Structured sublinear compressive sensing via belief propagation
详细信息    查看全文
文摘
Compressive sensing (CS) is a sampling technique designed for reducing the complexity of sparse data acquisition. One of the major obstacles for practical deployment of CS techniques is the signal reconstruction time and the high storage cost of random sensing matrices. We propose a new structured compressive sensing scheme, based on codes of graphs, that allows for a joint design of structured sensing matrices and logarithmic-complexity reconstruction algorithms. The compressive sensing matrices can be shown to offer asymptotically optimal performance when used in combination with orthogonal matching pursuit (OMP) methods. For reduced-complexity greedy reconstruction schemes, we propose a new family of list-decoding belief propagation algorithms, as well as reinforced and multiple-basis belief propagation (BP) algorithms. Our simulation results indicate that reinforced BP CS schemes offer very good complexity-performance tradeoffs for very sparse signal vectors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700