用户名: 密码: 验证码:
水工隧洞混凝土衬砌地震动响应过程分析
详细信息   下载全文 | 推荐本文 |
摘要
地震作用下水工隧洞混凝土衬砌结构的动态响应是工程设计和安全评估的重要内容,建立科学合理的混凝土动力本构模型以及内水与衬砌动力耦合作用分析方法是衬砌结构抗震研究的关键环节。基于应变空间静力损伤本构的基本思路,对3维应力状态下混凝土静态拉、压损伤变量进行定义和求解;在此基础上,考虑静、动态荷载作用下混凝土本构关系曲线的相似性特点,建立了适宜编程的混凝土动态损伤本构模型。基于单相固体介质和流体介质动力分析的显式有限元法,结合耦合界面的边界条件,建立了水工隧洞内水与衬砌耦合作用的动力显式有限元分析模型,该方法可以直接进行逐步积分,无需联立方程组求解,大大简化了计算过程,可以方便地用于分析多种介质的波动传播问题。针对某水电站引水隧洞工程进行了实例分析,计算结果表明:1)各部位混凝土衬砌处于同步震动状态,但腰拱部位位移明显小于顶拱和底拱部位;2)地震作用下混凝土衬砌迅速进入损伤开裂状态,腰拱部位衬砌应力增加明显,损伤破坏严重;3)开裂破坏区由腰拱逐渐向两端扩展,与内水直接作用的内层衬砌结构是抗震设计的薄弱环节。该模型能够合理地反映水工隧洞混凝土衬砌的地震动响应特性,并为水工隧洞抗震设计提供了一种有效的分析方法。
        Dynamic response of concrete lining structure in hydraulic tunnel under seismic load is of great importance for engineering design and safety assessment,and it is the key link to establish a scientific and reasonable dynamic constitutive model and a coupling analysis method of inner water and lining for the seismic research of lining structure. In light of the basic idea of static damage constitutive in strain space,the static tension and compression damage variables for concrete under three-dimensional stress state were defined and solved. According to the similarity principle of constitutive relation curves of concrete under static and dynamic loading,a dynamic damage constitutive model of concrete suitable for programming was developed. Based on the explicit finite element method for analyzing the dynamic response of single-phase solid and fluid medium,combining with the boundary condition at coupling interface,a dynamic explicit finite element analysis model considering the coupling interaction of lining and inner water was presented. This method could directly integrate,solve without simultaneous equations,and greatly simplify the calculation process. Moreover,it could be easily used to analyze wave propagation problems with a variety of mediums. Taking some diversion tunnel as an engineering example,the calculation results show: 1) various parts of concrete lining are in a synchronous vibration state,but the displacement of haunch is obviously less than the vault and inverted arch; 2) the maximum principal stress quickly increases,and exceeds the tensile strength,in which the haunch is remarkably influenced,leading to great stress increment and serious damage; 3) the cracking zones gradually extend from the haunch to each side,and the inner lining directly interacting with fluid is the weak link of seismic design. This model could reasonably reflect the seismic response characteristics of concrete lining in hydraulic tunnel,and an effective analysis method was provided for the aseismic design of hydraulic tunnel.
引文
[1]Yashiro K,Kojima Y,Shimizu M.Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake[J].Quarterly Report of RTRI,2007,48(3):136-141.
    [2]Wang W L,Wang T T,Su J J,et al.Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J].Tunnelling and Underground Space Technology,2001,16(3):133-150.
    [3]Li Tianbin.Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for a seismic tunnel construction[J].Bulletin of Engineering Geology and the Environment,2012,71(2):297-308.
    [4]Wang Zhengzheng,Gao Bo,Jiang Yuanjun,et al.Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J].Science in China(Technological Sciences),2009,52(2):546-558.
    [5]Tedesco J W,Powell J C,Ross C A,et al.A strain-ratedependent concrete material model for ADINA[J].Computers and Structures,1997,64(5/6):1053-1067.
    [6]Winnicki A,Cichon C.Plastic model for concrete in plane stress state[J].Journal of Engineering Mechanics,1998,124(6):591-602.
    [7]Xiao Shiyun,Li Hongnan,Du Rongqiang,et al.Four-parameter dynamic constitutive model of concrete[J].Journal of Harbin Institute of Technology,2006,38(10):1754-1757.[肖诗云,李宏男,杜荣强,等.混凝土四参数动态本构模型[J].哈尔滨工业大学学报,2006,38(10):1754-1757.]
    [8]Pandey A K,Kumar R,Paul D K,et al.Strain rate model for dynamic analysis of reinforced concrete structures[J].Journal of Structural Engineering,2006,132(9):1393-1401.
    [9]Shkolnik I E.Influence of high strain rates on stressstrain relationship,strength and elastic modulus of concrete[J].Cement and Concrete Composites,2008,30(10):1000-1012.
    [10]Li Qingbin,Zhang Chuhan,Wang Guanglun.Dynamic damage constitutive model of concrete in uniaxial tension and compression[J].Journal of Hydraulic Engineering,1994,12:55-60.[李庆斌,张楚汉,王光纶.单轴状态下混凝土的动力损伤本构模型[J].水利学报,1994,12:55-60.]
    [11]Wang Jinting,Du Xiuli,Zhao Chenggang,et al.Explicit finite element scheme for dynamic analyses of wave propagation in multi-layered media[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(1):75-79.[王进廷,杜修力,赵成刚,等.分层介质中波动传播分析的显式有限元法[J].岩石力学与工程学报,2003,22(1):75-79.]
    [12]Wang Jinting,Du Xiuli,Zhao Chenggang.Explicit finite element method for dynamic analyses of fluid-saturated porous solid[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(8):1199-1204.[王进廷,杜修力,赵成刚.液固两相饱和介质动力分析的一种显式有限元法[J].岩石力学与工程学报,2002,21(8):1199-1204.]
    [13]Wang Tongtao,Yang Chunhe,Yan Xiangzhen,et al.Dynamic response of underground gas storage salt cavern under seismic loads[J].Tunnelling and Underground Space Technology,2014,43(7):241-252.
    [14]Hashemi S,Saadatpour M M,Kianoush M R.Dynamic behavior of flexible rectangular fluid containers[J].ThinWalled Structures,2013,66(3):23-38.
    [15]Du Xiuli,Wang Jinting.Seismic response analysis of arch dam-water-rock foundation systems[J].Earthquake Engineering and Engineering Vibration,2004,3(2):283-288.
    [16]Bouaanani N,Renaud S.Effects of fluid-structure interaction modeling assumptions on seismic floor acceleration demands within gravity dams[J].Engineering Structure,2014,67:1-18.
    [17]Nateghi R,Kiany M,Gholipouri O.Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration[J].Tunnelling and Underground Space Technology,2009,24(6):608-616.
    [18]Cheng Xuansheng,Xu Weiwei,Yue Caiquan,et al.Seismic response of fluid-structure interaction of undersea tunnel during bidirectional earthquake[J].Ocean Engineering,2014,75(1):64-70.
    [19]宋玉普.混凝土的动力本构关系和破坏准则[M].北京:科学出版社,2013.
    [20]Zhou X Q,Hao H.Modelling of compressivebehaviour of concrete-like materials at high strain rate[J].International Journal of Solids and Structures,2008,45(17):4648-4661.
    [21]Bischoff P H,Perry S H.Compressive behavior of concrete at high strain rates[J].Materials and Structures,1991,24(6):425-450.
    [22]Brooks J J,Samaraie N H.Influence of rate of stressing on tensile stress-strain behavior of concrete[M].Essex,England:Elsevier Science Publisher,1989.
    [23]Chen Jianyun,Lin Gao,Hu Zhiqiang.Seismic analysis of arch dam with joints based on a new strain-rate-dependant plastic damage model[J].Chinese Journal of Computational Mechanics,2004,21(1):45-49.[陈建云,林皋,胡志强.考虑混凝土应变率变化的高拱坝非线性动力响应研究[J].计算力学学报,2004,21(1):45-49.]
    [24]Yuan Jinliang,Xiao Ming,Fu Zhihao.Numerical analysis on lining structure of restricted cylindric surge chamber in rock masses with steep obliquity[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(8):1296-1300.[袁金亮,肖明,傅志浩.陡倾角岩体中阻抗式圆形调压井衬砌结构数值分析[J].岩石力学与工程学报,2004,23(8):1296-1300.]
    [25]Wang S Y,Sun L,Yang C,et al.Numerical study on static and dynamic fracture evolution around rock cavities[J].Journal of Rock Mechanics and Geotechnical Engineering,2013,5(4):262-276.
    [26]Tang C A,Kaiser P K.Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part I:Fundamentals[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(2):113-121.
    [27]Zhu Wancheng,Tang Chun’an.Micromechanical model for simulating the fracture process of rock[J].Rock Mechanics and Rock Engineering,2004,37(1):25-56.
    [28]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [29]Wang Jinting,Du Xiuli.An explicit difference method for dynamic analysis of a structure system with damping[J].Engineering Mechanics,2002,19(3):109-111.[王进廷,杜修力.有阻尼体系动力分析的一种显式差分法[J].工程力学,2002,19(3):109-111.]
    [30]Zhang Zhiguo,Xiao Ming,Chen Juntao.Simulation of earthquake disaster process of large-scale underground caverns using three-dimensional dynamic finite element method[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(3):510-523.[张志国,肖明,陈俊涛.大型地下洞室地震灾变过程三维动力有限元模拟[J].岩石力学与工程学报,2011,30(3):510-523.]
    [31]Zhang Zhiguo,Chen Juntao,Xiao Ming.Artificial boundary setting for dynamic time-history analysis of deep buried underground caverns in earthquake disaster[J].Disaster Advances,2012,5(4):1136-1142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700